Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.962
Filtrar
1.
J Clin Invest ; 134(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690729

RESUMEN

The myosin inhibitor mavacamten has transformed the management of obstructive hypertrophic cardiomyopathy (HCM) by targeting myosin ATPase activity to mitigate cardiac hypercontractility. This therapeutic mechanism has proven effective for patients with HCM independent of having a primary gene mutation in myosin. In this issue of the JCI, Buvoli et al. report that muscle hypercontractility is a mechanism of pathogenesis underlying muscle dysfunction in Laing distal myopathy, a disorder characterized by mutations altering the rod domain of ß myosin heavy chain. The authors performed detailed physiological, molecular, and biomechanical analyses and demonstrated that myosin ATPase inhibition can correct a large extent of muscle abnormalities. The findings offer a therapeutic avenue for Laing distal myopathy and potentially other myopathies. This Commentary underscores the importance of reevaluating myosin activity's role across myopathies in general for the potential development of targeted myosin inhibitors to treat skeletal muscle disorders.


Asunto(s)
Bencilaminas , Músculo Esquelético , Uracilo/análogos & derivados , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/genética , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miopatías Distales/genética , Miopatías Distales/tratamiento farmacológico , Miopatías Distales/metabolismo , Miopatías Distales/patología , Animales , Mutación , Miosinas/metabolismo , Miosinas/genética
2.
Proc Natl Acad Sci U S A ; 121(19): e2318413121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683993

RESUMEN

Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the ß-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.


Asunto(s)
Miosinas Cardíacas , Cardiomiopatía Hipertrófica , Células Madre Pluripotentes Inducidas , Contracción Miocárdica , Miocitos Cardíacos , Cadenas Pesadas de Miosina , Humanos , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Contracción Miocárdica/genética , Mutación , Mitocondrias/metabolismo , Mitocondrias/genética , Miofibrillas/metabolismo , Respiración de la Célula/genética
4.
Circ Cardiovasc Imaging ; 17(4): e016042, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38563190

RESUMEN

BACKGROUND: Assessing myocardial strain by cardiac magnetic resonance feature tracking (FT) has been found to be useful in patients with overt hypertrophic cardiomyopathy (HCM). Little is known, however, of its role in sarcomere gene mutation carriers without overt left ventricular hypertrophy (subclinical HCM). METHODS: Thirty-eight subclinical HCM subjects and 42 healthy volunteers were enrolled in this multicenter case-control study. They underwent a comprehensive cardiac magnetic resonance study. Two-dimensional global radial, circumferential, and longitudinal strain of the left ventricle (LV) were evaluated by FT analysis. RESULTS: The subclinical HCM sample was 41 (22-51) years old and 32% were men. FT analysis revealed a reduction in global radial strain (29±7.2 versus 47.9±7.4; P<0.0001), global circumferential strain (-17.3±2.6 -versus -20.8±7.4; P<0.0001) and global longitudinal strain (-16.9±2.4 versus -20.5±2.6; P<0.0001) in subclinical HCM compared with control subjects. The significant differences persisted when considering the 23 individuals free of all the structural and functional ECG and cardiac magnetic resonance abnormalities previously described. Receiver operating characteristic curve analyses showed that the differential diagnostic performances of FT in discriminating subclinical HCM from normal subjects were good to excellent (global radial strain with optimal cut-off value of 40.43%: AUC, 0.946 [95% CI, 0.93-1.00]; sensitivity 90.48%, specificity 94.44%; global circumferential strain with cut-off, -18.54%: AUC, 0.849 [95% CI, 0.76-0.94]; sensitivity, 88.10%; specificity, 72.22%; global longitudinal strain with cut-off, -19.06%: AUC, 0.843 [95% CI, 0.76-0.93]; sensitivity, 78.57%; specificity, 78.95%). Similar values were found for discriminating those subclinical HCM subjects without other phenotypic abnormalities from healthy volunteers (global radial strain with optimal cut-off 40.43%: AUC, 0.966 [95% CI, 0.92-1.00]; sensitivity, 90.48%; specificity, 95.45%; global circumferential strain with cut-off, -18.44%: AUC, 0.866 [95% CI, 0.76-0.96]; sensitivity, 92.86%; specificity, 77.27%; global longitudinal strain with cut-off, -17.32%: AUC, 0.838 [95% CI, 0.73-0.94]; sensitivity, 90.48%; specificity, 65.22%). CONCLUSIONS: Cardiac magnetic resonance FT-derived parameters are consistently lower in subclinical patients with HCM, and they could emerge as a good tool for discovering the disease during a preclinical phase.


Asunto(s)
Cardiomiopatía Hipertrófica , Sarcómeros , Masculino , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Femenino , Estudios de Casos y Controles , Sarcómeros/genética , Sarcómeros/patología , Imagen por Resonancia Cinemagnética/métodos , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Espectroscopía de Resonancia Magnética , Mutación
5.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 61-67, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678626

RESUMEN

The purpose of this study was to explore the correlations of interleukin-1 (IL-1) and IL-6 gene polymorphisms with hypertrophic cardiomyopathy (HCM). A total of 200 patients with HCM were enrolled as disease group, and 200 healthy individuals were included as control group. Peripheral blood was collected from all subjects in both disease and control groups. Gene polymorphisms and serum expression levels of IL-1 and IL-6 were detected, and conjoint analysis was performed based on results of cardiac color Doppler ultrasound examination. The allele distribution of IL-1 rs1878320 showed a difference between disease and control groups (P=0.000). The frequency of the allele T was lower in disease group. The genotype distribution of IL-1 rs1878320 (P=0.001) and IL-6 rs1474347 (P=0.000) in disease group was different from that in control. The frequency of TC genotype of IL-1 rs1878320 was lower in disease group, and that of CA genotype of IL-6 rs1474347 was higher in disease group. There was a difference in the distribution of the dominant model of IL-6 rs1474347 between disease and control groups (P=0.021), and the frequency of CC + CA in the dominant model was 171 (0.855). The frequency of AC haplotype of IL-1 gene was overtly higher in disease group (P=0.000), while the frequency of AT haplotype was lower in disease group (P=0.000). The IL-1 rs1516792 polymorphism had an association with serum IL-1 level (P<0.05), the IL-1 level was notably increased in the patients with the genotype AA, and it was higher in disease group. The polymorphism of rs1878320 locus in IL-1 gene was correlated with interventricular septal (IVS) (P=0.047), and IVS was reduced in the patients with TC genotype. The polymorphism of rs1516792 locus in IL-1 gene was distinctly related to left ventricular outflow tract (LVOT) (P=0.041), and LVOT was lowered in the patients with GG genotype. The IL-6 rs2069831 polymorphism was associated with left ventricular ejection fraction (LVEF) (P=0.035), and LVEF declined in the patients with TT genotype. The IL-1 and IL-6 gene polymorphisms are correlated with the susceptibility and progression of HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Interleucina-1 , Interleucina-6 , Polimorfismo de Nucleótido Simple , Humanos , Interleucina-6/genética , Interleucina-6/sangre , Femenino , Masculino , Cardiomiopatía Hipertrófica/genética , Interleucina-1/genética , Interleucina-1/sangre , Polimorfismo de Nucleótido Simple/genética , Persona de Mediana Edad , Adulto , Frecuencia de los Genes/genética , Estudios de Casos y Controles , Alelos , Genotipo
6.
Comput Biol Med ; 175: 108499, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677172

RESUMEN

Familial hypertrophic cardiomyopathy (HCM) is a significant precursor of heart failure and sudden cardiac death, primarily caused by mutations in sarcomeric and structural proteins. Despite the extensive research on the HCM genotype, the complex and context-specific nature of many signaling and metabolic pathways linking the HCM genotype to phenotype has hindered therapeutic advancements for patients. Here, we have developed a computational model of HCM encompassing cardiomyocyte signaling and metabolic networks and their associated interactions. Utilizing a stochastic logic-based ODE approach, we linked cardiomyocyte signaling to the metabolic network through a gene regulatory network and post-translational modifications. We validated the model against published data on activities of signaling species in the HCM context and transcriptomes of two HCM mouse models (i.e., R403Q-αMyHC and R92W-TnT). Our model predicts that HCM mutation induces changes in metabolic functions such as ATP synthase deficiency and a transition from fatty acids to carbohydrate metabolism. The model indicated major shifts in glutamine-related metabolism and increased apoptosis after HCM-induced ATP synthase deficiency. We predicted that the transcription factors STAT, SRF, GATA4, TP53, and FoxO are the key regulators of cardiomyocyte hypertrophy and apoptosis in HCM in alignment with experiments. Moreover, we identified shared (e.g., activation of PGC1α by AMPK, and FHL1 by titin) and context-specific mechanisms (e.g., regulation of Ca2+ sensitivity by titin in HCM patients) that may control genotype-to-phenotype transition in HCM across different species or mutations. We also predicted potential combination drug targets for HCM (e.g., mavacamten plus ROS inhibitors) preventing or reversing HCM phenotype (i.e., hypertrophic growth, apoptosis, and metabolic remodeling) in cardiomyocytes. This study provides new insights into mechanisms linking genotype to phenotype in familial hypertrophic cardiomyopathy and offers a framework for assessing new treatments and exploring variations in HCM experimental models.


Asunto(s)
Cardiomiopatía Hipertrófica , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Animales , Ratones , Humanos , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Transducción de Señal , Modelos Cardiovasculares , Fenotipo , Genotipo
7.
FASEB J ; 38(6): e23505, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38507255

RESUMEN

Aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) are distinct disorders leading to left ventricular hypertrophy (LVH), but whether cardiac metabolism substantially differs between these in humans remains to be elucidated. We undertook an invasive (aortic root, coronary sinus) metabolic profiling in patients with severe AS and HCM in comparison with non-LVH controls to investigate cardiac fuel selection and metabolic remodeling. These patients were assessed under different physiological states (at rest, during stress induced by pacing). The identified changes in the metabolome were further validated by metabolomic and orthogonal transcriptomic analysis, in separately recruited patient cohorts. We identified a highly discriminant metabolomic signature in severe AS in all samples, regardless of sampling site, characterized by striking accumulation of long-chain acylcarnitines, intermediates of fatty acid transport across the inner mitochondrial membrane, and validated this in a separate cohort. Mechanistically, we identify a downregulation in the PPAR-α transcriptional network, including expression of genes regulating fatty acid oxidation (FAO). In silico modeling of ß-oxidation demonstrated that flux could be inhibited by both the accumulation of fatty acids as a substrate for mitochondria and the accumulation of medium-chain carnitines which induce competitive inhibition of the acyl-CoA dehydrogenases. We present a comprehensive analysis of changes in the metabolic pathways (transcriptome to metabolome) in severe AS, and its comparison to HCM. Our results demonstrate a progressive impairment of ß-oxidation from HCM to AS, particularly for FAO of long-chain fatty acids, and that the PPAR-α signaling network may be a specific metabolic therapeutic target in AS.


Asunto(s)
Estenosis de la Válvula Aórtica , Cardiomiopatía Hipertrófica , Humanos , Receptores Activados del Proliferador del Peroxisoma , Cardiomiopatía Hipertrófica/genética , Hipertrofia Ventricular Izquierda/genética , Estenosis de la Válvula Aórtica/genética , Ácidos Grasos/metabolismo
9.
Cell Mol Life Sci ; 81(1): 158, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556571

RESUMEN

Mutations in cysteine and glycine-rich protein 3 (CSRP3)/muscle LIM protein (MLP), a key regulator of striated muscle function, have been linked to hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) in patients. However, the roles of CSRP3 in heart development and regeneration are not completely understood. In this study, we characterized a novel zebrafish gene-trap line, gSAIzGFFM218A, which harbors an insertion in the csrp3 genomic locus, heterozygous fish served as a csrp3 expression reporter line and homozygous fish served as a csrp3 mutant line. We discovered that csrp3 is specifically expressed in larval ventricular cardiomyocytes (CMs) and that csrp3 deficiency leads to excessive trabeculation, a common feature of CSRP3-related HCM and DCM. We further revealed that csrp3 expression increased in response to different cardiac injuries and was regulated by several signaling pathways vital for heart regeneration. Csrp3 deficiency impeded zebrafish heart regeneration by impairing CM dedifferentiation, hindering sarcomere reassembly, and reducing CM proliferation while aggravating apoptosis. Csrp3 overexpression promoted CM proliferation after injury and ameliorated the impairment of ventricle regeneration caused by pharmacological inhibition of multiple signaling pathways. Our study highlights the critical role of Csrp3 in both zebrafish heart development and regeneration, and provides a valuable animal model for further functional exploration that will shed light on the molecular pathogenesis of CSRP3-related human cardiac diseases.


Asunto(s)
Cardiomiopatía Hipertrófica , Proteínas con Dominio LIM , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Cisteína/genética , Cisteína/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Miocitos Cardíacos/metabolismo
10.
Circ Heart Fail ; 17(3): e010970, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38456273

RESUMEN

BACKGROUND: Aotearoa/New Zealand has a multiethnic population. Patients with hypertrophic cardiomyopathy (HCM) are enrolled in the national Cardiac Inherited Diseases Registry New Zealand. Here, we report the characteristics of Cardiac Inherited Diseases Registry New Zealand HCM probands with and without pathogenic or likely pathogenic (P/LP) genetic variants for HCM, and assess genetic testing yield and variant spectrum by self-identified ethnicity. METHODS: Probands with HCM and enrolled in Cardiac Inherited Diseases Registry New Zealand who have undergone clinical genetic testing over a 17-year period were included. Clinical data, family history, and genetic test results were analyzed. RESULTS: Of 336 probands, 121 (36%) were women, 220 (66%) were European ethnicity, 41 (12%) were Maori, 26 (8%) were Pacific people, and 49 (15%) were other ethnicities. Thirteen probands (4%) presented with sudden death and 19 (6%) with cardiac arrest. A total of 134 (40%) had a P/LP variant identified; most commonly in the MYBPC3 gene (60%) followed by the MYH7 gene (24%). A P/LP variant was identified in 27% of Maori or Pacific probands versus 43% European or other ethnicity probands (P=0.022); 16% of Maori or Pacific probands had a variant of uncertain significance identified, compared with 9% of European or other ethnicity probands (P=0.092). Women more often had a P/LP variant identified than men (48% versus 35%; P=0.032), and variant-positive probands were younger at clinical diagnosis than variant of uncertain significance/variant-negative probands (39±17 versus 50±17 years; P<0.001) and more likely to have experienced cardiac arrest or sudden death events over their lifetime (P=0.002). CONCLUSIONS: Carriage of a P/LP variant in HCM probands is associated with presentation at younger age, and cardiac arrest or sudden death events. Maori or Pacific probands were less likely to have a P/LP variant identified than European or other ethnicity probands.


Asunto(s)
Cardiomiopatía Hipertrófica , Paro Cardíaco , Cardiopatías , Insuficiencia Cardíaca , Femenino , Humanos , Masculino , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Muerte Súbita , Etnicidad/genética , Pruebas Genéticas , Insuficiencia Cardíaca/genética , Pueblo Maorí , Nueva Zelanda/epidemiología , Pueblos Isleños del Pacífico , Sistema de Registros , Adulto , Persona de Mediana Edad , Anciano
13.
Front Biosci (Schol Ed) ; 16(1): 1, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38538344

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy is the most frequent autosomal dominant disease, yet due to genetic heterogeneity, incomplete penetrance, and phenotype variability, the prognosis of the disease course in pathogenic variant carriers remains an issue. Identifying common patterns among the effects of different genetic variants is important. METHODS: We investigated the cause of familial hypertrophic cardiomyopathy (HCM) in a family with two patients suffering from a particularly severe disease. Searching for the genetic variants in HCM genes was performed using different sequencing methods. RESULTS: A new missense variant, p.Leu714Arg, was identified in exon 19 of the beta-myosin heavy chain gene (MYH7). The mutation was found in a region that encodes the 'converter domain' in the globular myosin head. This domain is essential for the conformational change of myosin during ATP cleavage and contraction cycle. Most reports on different mutations in this region describe severe phenotypic consequences. The two patients with the p.Leu714Arg mutation had heart failure early in life and died from HCM complications. CONCLUSIONS: This case presents a new likely pathogenic variant in MYH7 and supports the hypothesis that myosin converter mutations constitute a subclass of HCM mutations with a poor prognosis for the patient.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar , Cardiomiopatía Hipertrófica , Humanos , Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica Familiar/diagnóstico por imagen , Cardiomiopatía Hipertrófica Familiar/genética , Mutación , Mutación Missense/genética , Cadenas Pesadas de Miosina/genética , Fenotipo
14.
Circ Genom Precis Med ; 17(2): e004377, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38362799

RESUMEN

BACKGROUND: Pathogenic autosomal-dominant missense variants in MYH7 (myosin heavy chain 7), which encodes the sarcomeric protein (ß-MHC [beta myosin heavy chain]) expressed in cardiac and skeletal myocytes, are a leading cause of hypertrophic cardiomyopathy and are clinically actionable. However, ≈75% of MYH7 missense variants are of unknown significance. While human-induced pluripotent stem cells (hiPSCs) can be differentiated into cardiomyocytes to enable the interrogation of MYH7 variant effect in a disease-relevant context, deep mutational scanning has not been executed using diploid hiPSC derivates due to low hiPSC gene-editing efficiency. Moreover, multiplexable phenotypes enabling deep mutational scanning of MYH7 variant hiPSC-derived cardiomyocytes are unknown. METHODS: To overcome these obstacles, we used CRISPRa On-Target Editing Retrieval enrichment to generate an hiPSC library containing 113 MYH7 codon variants suitable for deep mutational scanning. We first established that ß-MHC protein loss occurs in a hypertrophic cardiomyopathy human heart with a pathogenic MYH7 variant. We then differentiated the MYH7 missense variant hiPSC library to cardiomyocytes for multiplexed assessment of ß-MHC variant abundance by massively parallel sequencing and hiPSC-derived cardiomyocyte survival. RESULTS: Both the multiplexed assessment of ß-MHC abundance and hiPSC-derived cardiomyocyte survival accurately segregated all known pathogenic variants from synonymous variants. Functional data were generated for 4 variants of unknown significance and 58 additional MYH7 missense variants not yet detected in patients. CONCLUSIONS: This study leveraged hiPSC differentiation into disease-relevant cardiomyocytes to enable multiplexed assessments of MYH7 missense variants for the first time. Phenotyping strategies used here enable the application of deep mutational scanning to clinically actionable genes, which should reduce the burden of variants of unknown significance on patients and clinicians.


Asunto(s)
Cardiomiopatía Hipertrófica , Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Células Madre Pluripotentes Inducidas/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Diferenciación Celular/genética , Miosinas Cardíacas/genética
15.
Heart Fail Rev ; 29(3): 663-674, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308002

RESUMEN

Over the last years, there has been a growing interest in the clinical manifestations and outcomes of cardiomyopathies in women. Peripartum cardiomyopathy is the only women-specific cardiomyopathy. In cardiomyopathies with X-linked transmission, women are not simply healthy carriers of the disorder, but can show a wide spectrum of clinical manifestations ranging from mild to severe manifestations because of heterogeneous patterns of X-chromosome inactivation. In mitochondrial disorders with a matrilinear transmission, cardiomyopathy is part of a systemic disorder affecting both men and women. Even some inherited cardiomyopathies with autosomal transmission display phenotypic and prognostic differences between men and women. Notably, female hormones seem to exert a protective role in hypertrophic cardiomyopathy (HCM) and variant transthyretin amyloidosis until the menopausal period. Women with cardiomyopathies holding high-risk features should be referred to a third-level center and evaluated on an individual basis. Cardiomyopathies can have a detrimental impact on pregnancy and childbirth because of the associated hemodynamic derangements. Genetic counselling and a tailored cardiological evaluation are essential to evaluate the likelihood of transmitting the disease to the children and the possibility of a prenatal or early post-natal diagnosis, as well as to estimate the risk associated with pregnancy and delivery, and the optimal management strategies.


Asunto(s)
Cardiomiopatías , Humanos , Femenino , Cardiomiopatías/terapia , Cardiomiopatías/diagnóstico , Cardiomiopatías/fisiopatología , Cardiomiopatías/genética , Embarazo , Complicaciones Cardiovasculares del Embarazo/terapia , Complicaciones Cardiovasculares del Embarazo/fisiopatología , Complicaciones Cardiovasculares del Embarazo/diagnóstico , Complicaciones Cardiovasculares del Embarazo/genética , Cardiomiopatía Hipertrófica/terapia , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/fisiopatología , Asesoramiento Genético/métodos , Manejo de la Enfermedad
16.
J Am Coll Cardiol ; 83(11): 1042-1055, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38385929

RESUMEN

BACKGROUND: Ventricular arrhythmia in hypertrophic cardiomyopathy (HCM) relates to adverse structural change and genetic status. Cardiovascular magnetic resonance (CMR)-guided electrocardiographic imaging (ECGI) noninvasively maps cardiac structural and electrophysiological (EP) properties. OBJECTIVES: The purpose of this study was to establish whether in subclinical HCM (genotype [G]+ left ventricular hypertrophy [LVH]-), ECGI detects early EP abnormality, and in overt HCM, whether the EP substrate relates to genetic status (G+/G-LVH+) and structural phenotype. METHODS: This was a prospective 211-participant CMR-ECGI multicenter study of 70 G+LVH-, 104 LVH+ (51 G+/53 G-), and 37 healthy volunteers (HVs). Local activation time (AT), corrected repolarization time, corrected activation-recovery interval, spatial gradients (GAT/GRTc), and signal fractionation were derived from 1,000 epicardial sites per participant. Maximal wall thickness and scar burden were derived from CMR. A support vector machine was built to discriminate G+LVH- from HV and low-risk HCM from those with intermediate/high-risk score or nonsustained ventricular tachycardia. RESULTS: Compared with HV, subclinical HCM showed mean AT prolongation (P = 0.008) even with normal 12-lead electrocardiograms (ECGs) (P = 0.009), and repolarization was more spatially heterogenous (GRTc: P = 0.005) (23% had normal ECGs). Corrected activation-recovery interval was prolonged in overt vs subclinical HCM (P < 0.001). Mean AT was associated with maximal wall thickness; spatial conduction heterogeneity (GAT) and fractionation were associated with scar (all P < 0.05), and G+LVH+ had more fractionation than G-LVH+ (P = 0.002). The support vector machine discriminated subclinical HCM from HV (10-fold cross-validation accuracy 80% [95% CI: 73%-85%]) and identified patients at higher risk of sudden cardiac death (accuracy 82% [95% CI: 78%-86%]). CONCLUSIONS: In the absence of LVH or 12-lead ECG abnormalities, HCM sarcomere gene mutation carriers express an aberrant EP phenotype detected by ECGI. In overt HCM, abnormalities occur more severely with adverse structural change and positive genetic status.


Asunto(s)
Cardiomiopatía Hipertrófica , Cicatriz , Humanos , Estudios Prospectivos , Cicatriz/patología , Imagen por Resonancia Cinemagnética , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cardiomiopatía Hipertrófica/genética , Electrocardiografía , Hipertrofia Ventricular Izquierda/diagnóstico , Imagen por Resonancia Magnética
17.
Presse Med ; 53(1): 104223, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309622

RESUMEN

This review proposes to look at the evolution of cardiomyopathy treatments in the light of advances in diagnostic techniques, which have enabled to move from a mechanistic to a phenotypic and then etiological approach. The article goes beyond the ejection fraction approach, and look at new therapies that target the pathophysiological pathways of cardiomyopathies, either by targeting the phenotype, or by targeting the etiology. The evolution of HCM treatments is detailed, culminating in the latest etiological treatments such as mavacamten in sarcomeric HCM, tafamidis in transthyretin cardiac amyloidosis and migalastat in Fabry disease. Myosin stimulators are reviewed in the treatment of DCM, before opening perspectives for gene therapy, which proposes direct treatment of the culprit mutation.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Humanos , Cardiomiopatía Hipertrófica/genética , Cardiomiopatías/genética , Cardiomiopatías/terapia , Mutación , Fenotipo
18.
Anatol J Cardiol ; 28(3): 150-157, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38419512

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a genetically inherited cardiac disorder with diverse clinical presentations. Adrenergic activity, primarily mediated through beta-adrenoceptors, plays a central role in the clinical course of HCM. Adrenergic stimulation increases cardiac contractility and heart rate through beta-1 adrenoceptor activation. Beta-blocker drugs are recommended as the primary treatment for symptomatic HCM patients to mitigate these effects. METHODS: This prospective study aimed to investigate the impact of common ADRB-1 gene polymorphisms, specifically serine-glycine at position 49 and arginine-glycine at position 389, on the clinical and structural aspects of HCM. Additionally, the study explored the association between these genetic variations and the response to beta-blocker therapy in HCM patients. RESULTS: A cohort of 147 HCM patients was enrolled, and comprehensive assessments were performed. The findings revealed that the Ser49Gly polymorphism significantly influenced ventricular ectopic beats, with beta-blocker therapy effectively reducing them in Ser49 homozygous patients. Moreover, natriuretic peptide levels decreased, particularly in Ser49 homozygotes, indicating improved cardiac function. Left ventricular outflow obstruction, a hallmark of HCM, was also reduced following beta-blocker treatment in all patient groups. In contrast, the Arg389Gly polymorphism did not significantly impact baseline parameters or beta-blocker response. CONCLUSION: These results emphasize the role of the Ser49Gly polymorphism in the ADRB-1 gene in shaping the clinical course and response to beta-blocker therapy in HCM patients. This insight may enable a more personalized approach to managing HCM by considering genetic factors in treatment decisions. Further research with larger populations and longer follow-up periods is needed to confirm and expand upon these findings.


Asunto(s)
Cardiomiopatía Hipertrófica , Polimorfismo Genético , Humanos , Estudios Prospectivos , Antagonistas Adrenérgicos beta/uso terapéutico , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/genética , Receptores Adrenérgicos/genética , Progresión de la Enfermedad , Glicina/genética
19.
Clin Genet ; 105(6): 676-682, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38356193

RESUMEN

Biallelic disease-causing variants in the ALPK3 gene were first identified in children presenting with a severe cardiomyopathy. More recently, it was shown that carriers of heterozygous ALPK3 null variants are at risk of developing hypertrophic cardiomyopathy (HCM) with an adult onset. Since the number of reported ALPK3 patients is small, the mutational spectrum and clinical data are not fully described. In this multi-centric study, we described the molecular and clinical spectrum of a large cohort of ALPK3 patients. Genetic testing using targeted next generation sequencing was performed in 16 183 cardiomyopathy index cases. Thirty-six patients carried at least one null ALPK3 variant. The five paediatric patients carried two ALPK3 variants, all presented an HCM phenotype with severe outcomes (one transplantation, one heart failure and one cardiac arrest). The 31 adult patients carried heterozygous variants and the main phenotype was HCM (n = 26/31); including 15% (n = 4) presented with an apical or a concentric form of hypertrophy. Reporting a large cohort of ALPK3 patients, this collaborative work confirmed a strong association with HCM and suggesting his screening in the context of idiopathic HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Proteínas Musculares , Fenotipo , Proteínas Quinasas , Humanos , Cardiomiopatía Hipertrófica/genética , Masculino , Femenino , Adulto , Niño , Adolescente , Francia/epidemiología , Persona de Mediana Edad , Prevalencia , Mutación , Preescolar , Predisposición Genética a la Enfermedad , Estudios de Cohortes , Heterocigoto , Adulto Joven , Pruebas Genéticas , Lactante , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Anciano
20.
Am J Cardiol ; 212S: S4-S13, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38368035

RESUMEN

Genetic testing is an important tool in the diagnosis and management of patients and families with hypertrophic cardiomyopathy (HCM). Modern testing can identify causative variants in 30 to >60% of patients, with probability of a positive test varying with baseline characteristics such as known family history of HCM. Patients diagnosed with HCM should be offered genetic counseling and genetic testing as appropriate. Standard multigene panels evaluate sarcomeric genes known to cause HCM as well as genetic conditions that can mimic HCM but require different management. Positive genetic testing (finding a pathogenic or likely pathogenic variant) helps to clarify diagnosis and assists in family screening. If there is high confidence that an identified variant is the cause of HCM, at-risk family members can pursue predictive testing to determine if they are truly at risk or if they can be dismissed from serial screening based on whether they inherited the family's causative variant. Interpreting test results can be complex, and providers should make use of multidisciplinary teams as well as evidence-based resources to obtain the best possible understanding of pathogenicity.


Asunto(s)
Cardiomiopatía Hipertrófica , Pruebas Genéticas , Humanos , Pruebas Genéticas/métodos , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Asesoramiento Genético , Familia , Sarcómeros/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA